Hilbertian Frobenius algebras

نویسندگان

چکیده

Commutative Hilbertian Frobenius algebras are those commutative semigroup objects in the monoidal category of Hilbert spaces, for which adjoint multiplication satisfies compatibility relation, that is, this “comultiplication” is a bimodule map. In note we show relation forces operators to be normal. We then prove these have strong Wedderburn decomposition where (ortho)complement Jacobson radical or equivalently annihilator, closure linear span elements essentially non-trivial characters. As consequence such an algebra semisimple if, and only its has dense range. particular every special algebra, with coisometric multiplication, semisimple. Moreover characterize from setting priori free involution, Ambrose’s H*-algebras as underlying algebras. Extending known result finite-dimensional situation, structures on given space one-to-one correspondence bounded above orthogonal sets. show, moreover, dually equivalent pointed

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbifolding Frobenius Algebras

We study the general theory of Frobenius algebras with group actions. These structures arise when one is studying the algebraic structures associated to a geometry stemming from a physical theory with a global finite gauge group, i.e. orbifold theories. In this context, we introduce and axiomatize these algebras. Furthermore, we define geometric cobordism categories whose functors to the catego...

متن کامل

Constructing Frobenius Algebras

We discuss the relationship between algebras, coalgebras, and Frobenius algebras. We describe a method of constructing a Frobenius algebra, given a finite-dimensional algebra, and we demonstrate the method with several concrete examples.

متن کامل

Second Quantized Frobenius Algebras

We show that given a Frobenius algebra there is a unique notion of its second quantization, which is the sum over all symmetric group quotients of n–th tensor powers, where the quotients are given by symmetric group twisted Frobenius algebras. To this end, we consider the setting of Frobenius algebras given by functors from geometric categories whose objects are endowed with geometric group act...

متن کامل

FROBENIUS n-GROUP ALGEBRAS

Frobenius algebras play an important role in the representation theory of finite groups. In the present work, we investigate the (quasi) Frobenius property of n-group algebras. Using the (quasi-) Frobenius property of ring, we can obtain some information about constructions of module category over this ring ([2], p. 66–67).

متن کامل

Bilinear Forms on Frobenius Algebras

We analyze the homothety types of associative bilinear forms that can occur on a Hopf algebra or on a local Frobenius k-algebra R with residue field k. If R is symmetric, then there exists a unique form on R up to homothety iff R is commutative. If R is Frobenius, then we introduce a norm based on the Nakayama automorphism of R. We show that if two forms on R are homothetic, then the norm of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2021

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2021.1958223